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Abstract 

 

In this study we diagnose the sources for the contiguous U.S. seasonal forecast skill that are 

related to sea-surface temperature (SST) variations using a combination of dynamical and 

empirical methods. The dynamical methods include ensemble simulations with 4 atmospheric 

general circulation models (AGCM) forced by observed monthly global SSTs from 1950 to 

1999, and ensemble AGCM experiments forced by idealized SST anomalies. The empirical 

methods involve a suite of reductions of the AGCM simulations.  These include uni- and multi-

variate regression models that encapsulate the simultaneous and 1-season lag linear connections 

between  seasonal mean tropical SST anomalies and U.S. precipitation and surface air 

temperature.  

 

Nearly all of the AGCM skill in U.S. precipitation and surface air temperature, arising from 

global SST influences,  can be explained by a single degree of freedom in the tropical SST field  

--- that associated with the linear atmospheric signal of El Niño/Southern Oscillation (ENSO).  

The results support previous findings regarding the preeminence of ENSO as a U.S. skill source.  

Our diagnostic methods exposed another skill source that appeared to be of non-ENSO origins. 

In late fall, when the AGCM simulation skill of U.S. temperatures peaked in absolute value and 

in spatial coverage, the majority of that originated from SST variability in the sub-tropical west 

Pacific Ocean and the South China Sea.  Hindcast experiments were performed for 1950-1999 

that revealed most of the simulation skill of U.S. seasonal climate to be recoverable at 1-season 

lag.   
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The skill attributable to the AGCMs was shown to achieve parity with that attributable to 

empirical models derived purely from observational data.  The diagnostics promote the 

interpretation that only limited advances in U.S. seasonal prediction skill should be expected 

from methods seeking to capitalize on sea surface predictors alone, and that advances which may 

occur in future decades could be readily masked by inherent multi-decadal fluctuations in skill of 

coupled ocean-atmosphere systems.   

 

 

 

1. Introduction 

Foremost among U.S. seasonal forecast skill sources are the state of tropical sea surface 

temperatures (SST), a relation stemming from the sensitivity of atmospheric stationary waves 

and storm tracks to tropical forcing (e.g., Hoskins and Karoly, 1981; Held et al. 1989).  To date, 

the El Niño-Southern Oscillation (ENSO), that is typified by east tropical Pacific SST variations, 

is the single phenomena of the ocean-atmosphere system demonstrated to render U.S. seasonal 

forecasts skillful (e.g., Barnett and Prisendorfer 1987; Barnston 1994; Higgins et al. 2004).   That 

skill is elevated in the winter and spring seasons, at which time it also exhibits a large spatial 

footprint over the U.S. due to the planetary-scale of ENSO-forced circulation variations.  

 

The question we pose is whether ENSO constitutes the sole tropical SST source of U.S. seasonal 

forecast skill.  To be sure, empirical and simulation studies have identified sensitivities to SST 

forcings outside the east tropical Pacific.  For example, the influence of SST anomalies over a  

region north of the equator in the tropical west Pacific was highlighed by Palmer and Owen 
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(1986) as contributing to the severe U.S. winter of 1976-77.  Empirical support for such a 

connection was provided by studies of the relation between atmospheric circulation patterns and 

proxies for tropical convection (Livezey and Mo 1987).  The influence of SST anomalies over 

the warm pool regions of the Indian and western Pacific Oceans have also been shown to play 

roles in the U.S. climate, such as during 1997 and 1998 (Pegion et al. 2000), and during 1998-

2002 when the U.S. experienced protracted warm and dry conditions (Kumar et al. 2001, 

Hoerling and Kumar 2003).  Idealized modeling experiments, both linear dynamical models 

forced by tropical heating (e.g., Ting and Yu 1998; Chen and Newman 1998), and perpetual-

mode general circulation models forced with idealized SSTs (Geisler at al. 1985; Barsugli and 

Sardeshmukh 2002), have confirmed robust Pacific-North American responses to forcings 

located outside the classic ENSO region of the east tropical Pacific.  

 

Historical simulations of 20th Century climate using atmospheric general circulation models 

(AGCMs) subjected to observed monthly evolving global SSTs are now permitting diagnosis of 

sensitivity patterns under realistic conditions. The availability of multi-AGCMs, each run 

numerous times over an historical period, permits a more robust and reliable identification of 

atmospheric response patterns associated with tropical forcing than hitherto possible.  Using a 

46-member ensemble of 50-year experiments spanning 1950-1999 from 4 different AGCMs, 

Hoerling and Kumar (2002) subjected the monthly 500 hPa height fields of the multi-model 

ensemble to a empirical orthogonal function (EOF) analysis.   These yielded evidence for at least 

4 different characteristic atmospheric patterns associated with tropical SST variability.  The 

leading one was the well-known ENSO teleconnection.   However, the additional patterns 

accounted for up to 50% of the local boundary forced variance over parts of North America, and 
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appeared to be of non-ENSO tropical origin.  It is unknown whether these additional sensitivities 

contribute to skill of U.S. surface temperature and precipitation predictions.   

 

An ensemble of AGCM runs yields a wealth of information about the sensitivity of the 

atmosphere to observed SST anomalies.  However, it is often not clear what the relationship 

between the prescribed SST and the GCM ensemble mean atmospheric response is.  For 

example, further diagnosis is necessary to determine how many degrees of freedom in the SST 

field are actually involved in producing the simulated atmospheric signals.    This is useful 

information, since it defines the  relevant phase space of SST patterns that need to be predicted 

accurately for a seasonal forecast.  Even if information can be obtained about the SST patterns 

from the AMIP runs (see e.g. Hoerling and Kumar, 2002), one is still left wondering how 

predictable those patterns are.  Goddard and Mason (2002) have examined the predictability 

issue by running a complementary ensemble of GCM runs, but instead of the traditional AMIP 

approach, they use SSTs that are persisted (as a simple prediction) for one season.  In this way 

they were able to investigate the predictability of the seasonal mean atmospheric state based on 

forecast SSTs rather than simultaneous SSTs.  Here we attempt to address both the question of 

how many degrees of freedom are needed to reproduce the ensemble mean GCM response over 

the U.S., and the question of how predictable that response is, using an empirical statistical 

model trained on the 46 member multi-model GCM ensemble. 

 

 

Our study combines AGCM and empirical methods to diagnose the simulation and hindcast skill 

of seasonal surface climate over the U.S. during 1950-1999.  The data sets and methods are 
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presented in section 2.  Section 3 presents results in which the seasonally varying skill of surface 

temperature and precipitation are described and diagnosed.  In addition to the expected ENSO 

contribution, a non-ENSO source of skill is discovered.  Section 4 focuses on a diagnosis of this 

additional source of U.S. skill.   A summary and concluding comments are given in section 5.     

 

2. Data and Method 

a. Observations 

Monthly observed U.S. surface temperature and rainfall data for 1950-1999 are available on a 

2.5 ° grid based on the Global Historical Climate Network.  Monthly sea surface temperature 

analyses for 1950-1999 come from the United Kingdom Meteorological Office (UKMO) Hadley 

Centre’s Global Sea-Ice and SST (HadiSST) dataset (Rayner et al. 2003).  The global SSTs are 

created using various techniques including reduced space optimal interpolation, and are available 

on a 1° grid.   

 

b. Atmospheric climate simulations forced by global SSTs 

The sea surface temperature role in climate variability is assessed using atmospheric GCMs  

forced with the specified, observed monthly variations in SSTs for 1950-1999. Multiple 

integrations are begun from different atmospheric initial conditions, but in which each ensemble 

member is subjected to identically specified sea surface conditions.  

 

Four different AGCMs are used, consisting of a total of 46 simulations spaning the last half of 

the 20th Century. The models used are identical to those in Hoerling and Kumar (2002).  Table 1 

summarizes their spatial resolutions, and the reader is refered to the indicated references for 
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details on different dynamical cores and physical parameterizations used in each model. The 

atmospheric GCMs include 12 simulations using NCAR's Community Climate Model (CCM3; 

Kiehl et al. 1998), 12 using NCEP's Medium Range Forecast model (MRF9; Kumar et al. 1996), 

10 with the European Centre-Hamburg Model (ECHAM3; Roeckner et al. 1992) and 12 

simulations using the climate model of the Geophysical Fluids Dynamics Laboratory (GFDL; 

Broccoli and Manabe 1992).  

 

Our analysis of the AGCMs is based on the combined 46-member ensemble.  The ensemble 

mean seasonal anomaly for each of the four models is calculated relative to the respective 

models’ climatology for each of the 600 overlaping seasons during 1950-1999.  The ensemble 

mean anomaly of each model is standardized by its SST-boundary forced (external) variance, as 

described in more detail in Hoerling and Kumar (2002). The ensemble mean seasonal anomaly 

for each of the 4 GCMs is calculated, with anomalies computed relative to the respective model's 

1950-99 climatology.  Because these models possess different sensitivities to identical boundary 

forcing, we standardized the ensemble anomaly of each GCM by its own external variance, also 

calculated for the 1950-99 period.  These are then averaged across the 4 models to yield a grand, 

standardized anomaly (consisting implicitly of the average anomaly for  46 discrete realizations).  

Actual anomalies are recovered by multiplying the standardized anomaly of each season by the 

4-model averaged external variance. These standardized anomalies are then averaged across the 

four models in order to produce the multi-model, standardized anomaly.  Actual anomalies are 

recovered by multiplying the standardized anomaly of each season by the four model averaged 

external variance. Horizonal and vertical resolutions of these models are listed in Table 1. In an 

analysis examining the impact of different ensemble mean methods, Byun (2002, personal 
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communication) compared the skill of this 46-member ensemble mean and the skill of another 

ensemble mean of the same 46-member but using a weighted average in which the weights were 

different for each member and determined by minimizing the difference between the model 

ensemble mean and the verification field.  Byun’s results indicated that for the 1950-99 50-year 

period the simulation skill of the weighted ensemble mean is  virtually  the same as the skill of 

the ensemble mean used in this study.  

 

c. Atmospheric climate simulations forced by idealized SSTs 

Simulations using a fixed  idealized SST anomaly over the subtropical western Pacific  are 

conducted, the pattern of which is discussed in section 4. This anomaly is specified and fixed 

throughout the seasonal cycle, and is added to the seasonally varying climatological SSTs. A 

total of 20 14-month simulations, beginning from randomly selected 1 November atmospheric 

initial conditions, were performed with NCAR’s CCM3, one of the models included in our multi-

model suite forced by realistic SSTs.  

 

d. Empirical climate prediction model 

The empirical model is based on uni- and multi-variate linear regression that relates a set of 

seasonally averaged fields of tropical (20°S-20°N) SST (the predictors) to a set of seasonally 

averaged model simulated fields of U.S. surface temperature and precipitation (the predictands) 

(see Fig. 1). Regression models are developed both for the simultaneous and 1-season lag 

relationships between predictor-predictand pairs.  This allows us to estimate the relevant SST 

subspace both for the zero-lag (contemporaneous) GCM simulation, and the 1-season lag GCM 

prediction.  Unlike the Goddard and Mason study, we do not rerun the GCM with predicted 
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SSTs, but instead use the lag-covariance relationships between the SST and the simulated 

atmospheric response from the AMIP integrations to estimate what the GCM prediction would 

be, given actual predicted SSTs. This approach assumes that the relationship between SSTs and 

the atmospheric response over the U.S. is linear.  This hypothesis is tested in the next section by 

verifying that the empirical model can reproduce the GCM simulation skill over the U.S..  The 

empirical statistical model we use is very similar to others used for seasonal prediction (e.g., 

Barnston 1994), except for the fact that in our case the model is trained on the 46-member 

ensemble average of multi-model simulations described in section 2b, instead of observed 

atmospheric states.  By training on the model ensemble mean, our tool describes the relation 

between atmospheric signal and tropical SST forcing, whereas similar tools trained on the brief, 

“single realization” of observed states neccesarily predict a blend of signal and noise given a 

tropical SST state. 

 

In the construction of the statistical model, the raw, seasonal predictor and predictand data are 

first pre-filtered using EOFs in a manner outlined by Barnett and Preisendorfer (1987) and as 

implemented by Barnston (1994). We retain N-EOFs in predictor and M-EOFs in predictand 

fields, where the truncation is determined by applying the formalism of North et al. (1982).  For 

the tropical SSTs, N is chosen to be 5 for all 12 overalapping seasons.  For U.S. precipitation, M 

is chosen to be 6 for all seasons, while M is chosen to be 9 for U.S. surface temperature. The 

North et al. (1982) analysis suggested that the EOF modes higher than a critical order are 

statistically indistinguishable. Therefore, we do not include higher order SST modes in our 

analysis and treat the higher order SST modes as noise. The EOF expansion coefficients 

(principal components) are then normalized by the square root of their eigenvalues, and the EOF 
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basis is calculated independently for each of 12-overlapping 3-month seasons. The cross-

covariance matrix is calculated in EOF space, and the predicted EOF expansion coefficients are 

transformed back to a 2.5 degree latitude/longitude grid. A parallel set of uni-variate regression 

models is constructed to isolate the contribution of ENSO to the predictands of interest. The uni-

variate regression uses only the 1st EOF (i.e. ENSO) mode of the tropical SST as a predictor, and 

6 (9) EOF modes of the U.S. precipitation (surface temperature) as predictands. The uni-variate 

regression is also trained on the multi-model ensemble mean.  

 

d. Verification methodology 

We employ a deterministic measure of skill based upon the temporal correlation.  Monthly mean 

surface air temperature and precipitation anomalies are obtained by subtracting the 30-year 

climatology of 1970-99 for each calender month from the monthly mean values at each grid 

point over our domain (see Fig. 2).  Three-month mean anomalies are then calculated from the 

monthly mean anomalies. The same method is applied to the output from the 46-member AGCM 

simulations. Verification is performed using the three-month mean anomalies.  

 

All the uni- and multi-variate empirical model simulations and hindcasts for each 3-month 

season employ a cross-validation procedure in which the model is constructed from the co-

variance matrix of 49-years of seasonal data, excluding the target season for the simulation or 

hindcast.  In this manner, a “new” empirical model is constructed for each year, and also for each 

season. The 1951-1999 skill of the empirical model simulations and hindcasts was then 

calculated in the way identical to that applied to the AGCM simulations.   When calculating 

spatial averages of correlation skill for U.S. surface temperature, coastal gridpoints (indicated by 

“o” in Figure 2) are excluded because local temperature skill at those areas can be largely 
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detemined by the prescribed SST in AGCM simulations.      

 

The field significance of  the correlation skill maps for each variable and for each of the twelve 

3-month seasons is tested in a manner similar to Livezey and Chen (1983).  For a given variable 

and season, Monte Carlo experiments of 3000 samples are first performed by randomly ordering 

the 50-year time sequence of observed fields and then calculating temporal correlations with the 

true 1950-99 observed time sequence.  From these, we compute the probability distribution of 

the number of U.S. points in Fig. 2 having temporal correlations exceeding 90% local 

significance (r > 0.25). Then, the number of U.S. grid points (N0) at 95% of the accumulated 

obtained distribution constitutes the minimum number necessary for passing field significance.  

In order that a correlation skill pattern be field significant, the actual number of locally 

significant grid-points (N) must exceed N0, i.e. the ratio N/N0 must exceed 1. 

 
3.  Diagnosing SST skill sources 

a. U. S. Precipitation 

The annual cycle of simulation skill, and its sources, averaged over the U.S. is summarized in 

Fig. 3.  Correlation skill of the AGCM simulations is low in all seasons (top), having a minor 

maximum during winter (thick solid line).  Its primary source is tropical SSTs, as demonstrated 

by the ability of the multivariate regression model simulation skill (thin solid line) to fully 

recover that of the global SST forced AGCMs.  Further, a single pattern of the tropical SST 

variations is able to explain this skill (dotted curve), namely the ENSO signature of the tropical 

east Pacific (not shown).  The simulation skills are field significant in winter and spring, but not 

so in summer and early fall (bottom).  
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Inspection of the spatial patterns of skill reveals the univariate regression model to be superior to 

the AGCM simulation in select regions.  Figure 4 shows the temporal anomaly correlation for the 

U.S. domain, and the plotted values are the truncated correlation skill scores (x 10) at all points 

exceeding 90% significance. The lower right corner of each panel plots the ratio N/N0, which 

denotes field significance for values >1.  The six columns correspond to partially overlapping 3-

month seasons, and the top three panels of each column display the AGCM simulation skill, the 

multivariate regression model skill, and the univariate regression model skill, respectively.   

 

During January-February-March (JFM), significant skill covers nearly half the domain in the 

univariate model, and mimics the spatial footprint of ENSO’s influence on U.S. precipitation 

(e.g. Ropelewski and Halpert 1989, Kiladis and Diaz 1989).  This pattern is only weakly 

discernable in the AGCM simulation skill.  Throughout all remaining seasons, it is found that the 

AGCM simulation skill is generally surpassed by a reduced-space representation of the relation 

between SST and model U.S. precipitation. 

 

The lower panels of each column display the zero-lead hindcast skill using the multivariate 

model. These recover virtually all of the 50-yr averaged AGCM simulation skill.  The uni-variate 

model often performs better than the multi-variate model. This is so because ENSO SSTs are the 

primary skill source, and the fact that such an ENSO pattern can itself be skillfully predicted at 

short lead times.   

 

b. U. S. Surface Temperature 

The SST source for U.S. surface temperature skill is found to be detemined not by ENSO alone, 

in contrast to the pure ENSO-source that was diagnosed for U.S. precipitation skill.  Figure 5 
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summarizes the area-averaged skill of the three simulation data sets, from which it is evident that 

the three simulation skills are comparable during winter and spring, but that the AGCM skill is 

greater than either multi- or univariate regressions in summer and fall.   Note that the AGCM 

skill is field significant in all seasons (bottom), contrary to the empirical model skill which are 

not field signifcant from September-November (SON) through November-January (NDJ). 

 

There is a distinct NDJ seasonal peak in simulation skill, at which time the U.S. averaged 50-yr 

mean skill exceeds 0.36.  The field significance exceeding 99.9% is all the more remarkable 

when compared to the lack of field significance by either empirical model simulation.  By 

contrast, the coincidence in skill of the three simulations during winter and spring indicates that 

ENSO’s linear signal is the primary source.  An ENSO SST source appears to impart little skill 

during other seasons as indicated by the large divergence between the AGCM and regression 

model skills at those times.  These other SST sources could be of tropical origin, but are 

unaccounted for by our truncated multivariate model, or they could be of extratropical sea 

surface origin.  It is also possible that non-linear processses associated with the atmospheric 

response to SST forcing are important contributors to the AGCM skill, relations also not 

represented in the regression models.   

 

The spatial distribution of surface temperature skill, shown in Fig. 6, offers further insights on 

SST sources.  There is little appreciable difference in skill patterns occurring among the three 

simulations during winter and spring --- the similarity with the univariate model skill confirms 

once again that the linear component of the ENSO-forced atmospheric signal is of primary 

consequence.  On the other hand, the AGCM simulation skill is greater in both its coverage and 
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its absolute value than either regression model during summer and fall.  The footprint differs 

from the linear ENSO contribution which, as illustrated by the univariate skill map, is confined 

to the southern U.S..  

 

Shown in the lower panels of Fig. 6 are the hindcast skills for the multivariate model.  These 

recover much of the simulation skill of U.S. surface temperature during winter/spring, consistent 

with the fact that the linear ENSO influence is of greatest relevance and that such SSTs are 

themselves skillfully predicted at zero-lead.  In contrast, they fail to reproduce the extensive 

spatial coverage of the AGCM’s simulation skill during the NDJ season.  

 
 
4. A Subtropical West Pacific Skill Source 

We first explore the SST structure associated with the AGCM’s high skill over the northern U.S. 

during November-December-January.  The green box in Fig. 7 keys on the region of high 

AGCM skill, and is the domain over which surface air temperatures are averaged in order to 

generate a 1950-1999 time series.  The correlation of that time series with SSTs across the global 

oceans is shown by the shaded contours, and the analysis is performed using both the AGCM 

(top) and observed (bottom) surface air temperatures.  Maximum correlations exceeding +0.5 

occur with SSTs over the northwest Pacific Ocean and the South China Sea, and  there is also 

some suggestion of an ENSO relation in so far as +0.3 correlations occur with over the tropical 

east Pacific.  However, the fact that an ENSO-region correlation is very weak in the observations 

suggests it is unlikely an appreciable skill source. By contrast, the consistencey between the 

simulated and observed high correlations over the Western Pacific suggests that SST variations 

there could be an important skill source for northern U.S. surface air temperature.  
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The coherency of their interannual fluctuations lends some support for a causal relation between 

subtropical west Pacific SSTs and the northern U.S. index region’s temperatures.  Figure 8 

overlays the times series of the surface air temperature index and an index of SST averaged over 

the west Pacific box of Fig. 7.  The former is calculated from both AGCM (Fig. 8, top) and 

observed (Fig. 8, bottom) surface air temperatures.   For both, the correlation with the west 

Pacific SST index exceeds +0.5, with warm sea surface conditions accompanying warm northern 

U.S. surface temperatures.  In addition to the tendency for interannual swings of each index to be 

alligned, a post-1970 warming trend in both ocean and land time series also contributes to the 

positive temporal correlations.  

 

 

Shown in Fig. 9 is the temporal variation of our west Pacific SST index with SST elsewhere.  

The coherency of an SST signature that encompasses the South China Sea, Philippine Sea, and 

the subtropical west Pacific is evident.  There is only a weak simultaneous relation with SSTs 

over the ENSO region, again suggesting that this west Pacific source of U.S. simulation skill  in 

the AGCM is not an obvious proxy for ENSO’s effect.  

 

Independent evidence for a causal link between variatons in west Pacific SSTs and U.S. surface 

temperatures is provided by the additional AGCM experiments forced exclusively with SSTs 

over that region.  The idealized anomalous SST forcing is obtained from a composite of the SST 

pattern contrasting warm and cold events (when anomalous values exceeded one standard 
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deviation) in the northern U.S. temperature (Fig.8 top), and has similar structure as outlined by 

the irregular contour in Fig. 9, and encompasses the spatial domain of temporally coherent west 

Pacific SST variations.  A 20-member ensemble of CCM3 simulations was conducted using both  

positive and negative polarities of the SST anomalies, with maximum amplitudes of 1° C.  The 

NDJ surface temperature anomalies of the (warm-cold) experiments is shown in the lower panel 

of Fig. 10.  Widespread warming covers North America, with a maximum signal over the 

northern U.S. and southern Canada.  This response pattern is remarkably similar with the 1950-

1999 correlation between an index of the west Pacific SSTs and both multi-model AGCM (Fig. 

10, top) and observed (Fig. 10, middle) surface temperatures.  Indicated hereby is that the 

statistical correlation does indeed describe a a cause-effect relationship.  

 

 

The implications of the above analyses is that a bivariate regression model, having west Pacific 

and tropical east Pacific SST predictors, should be able to recover the AGCM simulation skill 

during the NDJ season.  The simulation skill of such a bivariate model is shown in Fig. 11 

(middle panel).  For comparison, the simulation skill of only a univariate model using the west 

Pacific SST as predictor is shown in the top panel of Fig. 11.  Nearly all of the AGCM’s 

simulation skill over the northern U.S. during NDJ (see Fig. 6) is accounted for by a west Pacific 

influence.  The results of the bivariate model, which also includes the ENSO influence, almost 

completely recovers the AGCM simulation skill. These calculations support the argument that 

the high AGCM simulation skill for NDJ surface temperature over the northern US is attributed 

to the ocean-atmosphere interactions in the Western Pacific Ocean. 

 



 16 

As a final analysis, we re-examine the hindcast skill of NDJ surface temperatures, but now using 

a 1-season lag bivariate regression model.  The results are shown in the lower panel of Fig. 11, 

and it is apparent that the vast majority of simulation skill is retained in the prediction mode.  

This suggests that the west Pacific SST predictor is itself predictable and slowly evolving on the 

seasonal time scale. The new subtropical SST source bears some resemblance to the 3rd CCA 

SST mode in Barnston and Smith (1996). However, our analysis revealed that the SST variation 

in the subtropical Northwest Pacific Ocean is not a direct response to ENSO. In fact, the SST 

variation in the subtropical NW Pacific Ocean leads an out-of-phase ENSO episode by about one 

year (not shown). 

 
 
5. Summary and discussion 

a. Summary 

The sea surface temperature origins for seasonal forecast skill of U.S. precipitation and surface 

air temperature have been diagnosed.  The principal tool consisted of ensemble atmospheric 

GCM simulations that were subjected to the known monthly varying global SSTs from 1950-

1999.   The simulation skill of the resulting multi-model 46-member ensemble was evaluated, 

and then diagnosed using two empirical reductions of the full AGCM data.  The first consisted of 

a multivariate linear regression model relating the simultaneous states of five leading tropical 

SST patterns to the AGCM’s U.S. seasonal climate.  The second was  a univariate linear 

regression model whose predictor consisted of the single leading tropical SST pattern only --- 

ENSO.   

 

Our diagnosis revealed that the AGCM simulation skill could be explained by-and-large from the 
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linear influence of tropical sea surface temperature variations.  Furthermore, one degree of 

freedom in those tropical SSTs, namely ENSO, was the virtually exclusive interannual skill 

source originating from tropical oceans.  In the case of U.S. seasonal precipitation, the univariate 

regression model that encapsulated the linear ENSO signal produced simulation skill that 

exceeded the AGCM simulation skill, though field significance was confined to the period late 

Fall–late Spring. One interpretation for the superior precipitation skill of the univariate model is 

that whereas sensitivity patterns to non-ENSO SSTs existed in the AGCMs, these were 

seemingly erroneous and served to obscure the true skill source related to ENSO.  

 

A new SST skill source, of apparent non-ENSO origins, was discovered for U.S. surface air 

temperature.  Although the AGCM’s winter-spring skill source was again accounted for by a 

univariate linear influence of ENSO, the AGCM skill significantly exceeded that of either the 

linear models during the period from late summer through Fall.   During these latter seasons, 

both the AGCMs’ U.S. averaged correlation skill and the spatial extent of its significant local 

correlations greatly exceeded those occuring in the reduced phase space linear model simulations 

based on tropical SSTs alone. Our investigation focused on the November-January season of 

maximum difference in skills, and a coherent source related to SST variability over the sub-

tropical west Pacific Ocean and the South China Sea was found.   

 

That this empircal relation constituted a cause-effect link was confirmed through analysis of an 

additional suite of AGCM experiments that used an idealization of SST forcing confined to the 

far west Pacific/South China Sea region.  Those runs yielded a pattern of U.S., surface warming 

in response to warm SST forcing that reproduced the characteristic correlation patterns derived 
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from both the globally forced multi-model ensemble and the observational data sets.   A linear 

bivariate regression model using only indicies of Nino3.4 and west Pacific/South China Sea 

SSTs explained virtually all of the AGCM simulation skill during the NDJ season.   

 

Hindcast experiments for 1951-1999 were generated in order to determine what elements of 

skillfully simulated U.S. responses to known SST forcing could be predicted.  These employed 

the multivariate regression model using the 1-season lag relationships between tropical SST 

predictors and the AGCM’s U.S. seasonal climate.  These are analogous to zero-lead predictions, 

and estimate what the AGCM predictions would have been given a forecast for the tropical 

SSTs.  Virtually all of the simulation skill was recovered in the hindcast experiments for the 

seasons and the variables for which ENSO was the dominate source of simulation skill.  The 

hindcasts failed to recover the AGCM simulation skill of U.S. surface air temperature during late 

summer-fall.  It was demonstrated, however, that a 1-season lagged bivariate model could 

recover the AGCM’s high simulation skill during fall.  One conclusion drawn from the hindcasts 

is that the principal SST sources of U.S. predictability can themselves be skillfully forecast at 

zero-lead.   

 

b. Discussion 

Dynamical methods for U.S. climate prediction are now achieving parity with empirical 

approaches (e.g., Peng et al. 2000).  The key question is whether such equivalence of capability 

testifies to the limitations in skill of seasonal climate prediction, as suggested by Anderson et al. 

(1999), or whether it speaks to the infancy of dynamical models.    Our diagnosis of the skill 

sources offers the following insight on such questions.   
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The fact that the linear response to ENSO SST variability accounts for much of the AGCM skill 

over the U.S. ---- particularly in winter/spring for both precipitation and temperature---- implies 

that a simple regression model trained from observations should have comparable skill to the 

dynamical model given sufficient data.  We confirm this to be the case in Fig. 12 where the bar 

graphs compare the hindcast skill of our prior multivariate model to an identical model in which 

the U.S. predictand data are derived from observations.  Their 50-year hindcast skills are 

indistinguishable, and the reason is because both are originating from the ENSO influence whose 

response is realistically modeled in the AGCMs.   If there are other tropical SST skill sources in 

nature, then they are evidently too small (or they occur too infrequently) to be detected and have 

material effects on the 50-year averaged skill (This does not discount the possible skillful 

contribution of such additional tropical sources in individual years). The preeminence of ENSO 

as a U.S. skill source is further verified by the result of our singular value decomposition (SVD) 

analysis. We found that the singular value of the leading SVD mode is much larger than other 

SVD modes. Our result is consistent with that predicted by DelSole and Chang (2003). Our study 

did identify an additional non-ENSO skill contributor, but as was the case with ENSO, a linear 

empirical model could be used to capitalize upon that source too. 

 

In this study, our analysis has been foucused on the multi-model ensemble mean. Treating 

predictions from different models as a single ensemble increases the ensemble size and reduces 

sampling biases. Furthermore the skill of the ensemble mean is found to be higher than the skill 

of individual AGCMs included (figure not shown). In operational practice, the skill of seasonal 

forecasts may be further raised by applying more sophisticated multi-model combination 
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strateges (e.g. Goddard et al. 2003,  Barnston et al. 2004).  The sources of skill identified in our 

analysis are limited only to those that can be captured by the multi-model ensemble mean. 

Additional sources may be identified when optimal ensemble average methods are applied to 

maximize the skill. It is also possible that the seasonal forecast skill can be further improved, and 

additional non-ENSO skill sources identified, when newer generation models are available. 

 

The possibility that extratropical SST variations contribute to skill cannot be discounted based 

upon our analysis.  It is possible that the near equivalance in simulation skill between  the 

AGCMs and the statistical models using only tropical SST predictors (e.g., in all seasons for U.S. 

precipitation, and in winter/spring for  U.S. surface air temperature)  is symptomatic of AGCM 

biases, including the two-tier design of experiments, rather than a lack of predictive impact of 

non-tropical SSTs.   A important thrust for future investigation is asessing how, if at all, this 

current diagnosis of U.S. seasonal forecast skill related to sea surface temperature influences is 

modified when using the next generation of atmospheric GCMs.  Likewise, a comparative 

analysis of the AGCM skill against that of coupled ocean-atmosphere models is needed to  

specifically address whether the predictability estimates, such as presented herein and in 

previous studies using two-tiered systems, are applicable to fully coupled Earth System models.  

Regarding the skill attributes of such fully coupled models, it should also be noted that 

initialization of observed land surface conditions may be sources for U.S. skill, in addition to 

ocean surface conditions.  While the AGCM studied herein do employ coupled soil moisture 

models of various complexity, none of the runs used observed soil moisture conditions.  
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A further open question in seasonal climate predictability concerns the expected value for skill 

itself.  Is an analysis of skill drawn from 50 years of data a reliable estimate of the true expected 

value?  To what degree does such a 50-year analysis speak to the system’s predictability in 

general, and what are error bars on those estimates owing to sampling alone?  Little is known 

about the manner in which skill can vary over extended time periods. In so far as ENSO has been 

affirmed to be the primary source of skill, it is reasonable to suspect that periods of low ENSO 

variance would lead to lower U.S. climate predictability. At the same time, ENSO itself accounts 

for only a small fraction of U.S. climate variability (e.g., Hoerling and Kumar 2002), and thus 

purely atmospheric intrinsic variations could also impact skill fluctuations.   As a further 

diagnosis of the statistical robustness of our skill, we have used 650 years of output from an 

integration of  an unforced coupled ocean-atmosphere model (NCAR’s CCSM2; Kiehl and Gent 

2004).   This model posseses ENSO related variability that is sufficiently realistic for our 

purposes in so far as the model’s ENSO signal over the U.S. explains roughly the same fraction 

of interannual variance as does the observed ENSO signal (not shown).   Another empirical 

multivariate model was developed for 1-season lag relationships between tropical SSTs and U.S. 

surface air temperature based on the first 150 years of the coupled model run.  Hindcasts were 

then made for the subsequent 500 years of model data.  Figure 13 shows the probability densities 

of independent 50-year samples of hindcast skill of U.S. surface temperature for the seasons JFM 

through MAM.  The 50-yr mean variations range from a low correlation skill of 0.1 and a high 

value of 0.3, with a median value near 0.2.  These variations arise purely due to intrinsic coupled 

model noise. This result suggests that dynamical models are still needed to fully harvest the skill 

source of seasonal froecasts even if the skill of dynamical models comes from just one degree of 
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freedom in the SST, since the skills of empirical methods trained on 50-year of data may have 

large decadal swings. 

 

 In conclusion, it is apparent that a sound appraisal of the future prospects for U.S. seasonal 

forecast skill must be founded upon an understanding of the sources for skill itself.  Here we 

have explored the ocean’s role, and identified a single degree of freedom in SST variations as 

providing the bulk of U.S. seasonal skill. An outlook for future capabilities must also seek to 

understand the sources for multi-decadal variations in skill, which our analysis indicates could 

occur simply due to low frequency variations in ENSO and other intrinsic fluctuations of the 

coupled ocean-atmosphere system.  If multi-decadal variations in seasonal forecast skill are 

sufficiently large, then they could mask technological advances in seasonal prediction 

methodologies.  
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Figure Captions:  

 

Figure 1  Schemetic of the empirical model used to simulate and forecast U.S. seasonal 

precipitation (P) and surface air temperature (Ts). The indicies i and j denote the seasons 

used in each simulation and hindcast experiment.  In the simulations, j equals to i for each 

experiment. In the 1-season-lead hindcasts j is one season lag to i (e.g.,  when i points to 

OND of 1998, j is JFM of 1999).   See text for further details. 

 

Figure 2 Grids included in the verification for precipitation (all "o" and "+" grid-points),surface 

temperature (only the "+" grid-points).  

 

Figure 3 Saptial average of the 1951-99 temporal correlation for the US precipitation (top) 

and field significance values (bottom). Points above the shade are statistically significant at 

95% confidence level.    

 

Figure 4 Temporal correlation between observed and simulated/hindcast 3-month mean 

anomalies of precipitation. Red numbers are the first digit of of the correlation coefficient 

value at each grid-point. Having higher than 90% local significance. Black numbers shown 

at bottom right corner in each panel indicate field significance level (N/N0) of  the 

corresponding correlation patterns.  Ratios exceeding  1 indicates field significant at 95% 

confidence level. Note: the “lag-0” in figure caption represents “simulation”, and “lag-1” is 

used for “zero-lead hindcast” in text. 
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Figure 5  Same as Fig. 3 except for the US surface temperature.   

 

Figure 6 Same as Fig. 4 except for the US surface temperature. 

 

Figure 7 Spatial distribution of the correlation coefficient between SST and an index of  regional 

mean surface temperature over the northern U.S. (42N- 52N,120W-70W) based on  AGCM  

simulated (top panel) and observed (bottom panel) NDJ surface temperatures. Contour interval 

0.1.  Green box denotes index region for constructing land temeprature time series, and white 

box index region for constructing SST time series.   

 

Figure 8 Time series of NDJ anomalies of Northern U.S. surface temperature (black line) based 

on AGCM simulations (top) and observations (bottom).  Red line denotes the time series of NDJ 

SSTs averaged over the Western Pacific region.  Inserted boxes of Fig. 7 show the averaging 

domains for contructing each time series.  

 

Figure 9  The 1950-1999 temporal correlation  between the NDJ SST anomalies and the NDJ 

index of subtropical west Pacific SSTs.  Contour interval 0.1. See Fig. 7 for the averaging 

domain for constructing the index. The irregular white contour encloses a region of SST 

variations coherent with the index region, and is used as the forcing region for idealized AGCM 

simulations.  

 

Figure 10 Spatial distribution of the correlation between the NDJ SST anomalies in the 

western Pacific Ocean and the multi-AGCM ensemble mean (top panel) and observed 
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(middle panel) surface temperature anomalies. Contour interval is 0.1. The CCM3 response 

to the idealized SST anomalies in the Western Pacific Ocean is shown in the bottom panel. 

Contour interval is 1. C.     

 

Figure 11 Same as Fig.6 but for the NDJ simulation skill  based on a univariate regression 

model using only an index of subtropical west Pacific (WP) SSTs as predictor, a bivariate 

regression model using the WP and Nino 3.4 indicies as predictors (middle panel); and the 

hindcast skill based on a lagged bivariate model relating ASO Nino3.4 and WP SST 

anomalies to NDJ surface temperature (bottom panel),  

 

Figure 12.   The U.S. spatially averaged multivariate model hindcast skill for 1951-99 for 

observed U.S. precipitation, and surface temperature using identical empirical models except that 

the predicand data are derived from the AGCMs (MR(G)) in one case and from the observations 

in the other case (MR(O)).  

 

Figure 13. Probability distribution of the 50-year U.S. surface temperature skill obtained from 

the 500-year simulation of the NCAR coupled climate system model 

 

.   
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Table 1.  Characteristics of the atmospheric GCMs used in the study. 

 
 SPECTRAL 

RESOLUTION 
SIGMA 

LAYERS 
ENSEMBLE 

SIZE 
REFERENCE 

CCM3         T42        18         12 Kiehl et al. (1998) 
ECHAM3         T42        18         10  Roeckner et al.(1992) 
GFDL         R30        18         12 Broccoli and Manabe (1992) 
MRF9         T40        18         12  Kumar et al. (1996) 
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Figure 1  Schemetic of the empirical model used to simulate and forecast U.S. seasonal precipitation (P) and 
surface air temperature (Ts). The indicies i and j denote the seasons used in each simulation and hindcast 
experiment.  In the simulations, j equals to i for each experiment. In the 1-season-lead hindcasts j is one 
season lag to i (e.g.,  when i points to OND of 1998, j is JFM of 1999).   See text for further details. 
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                 Figure 2 Grids included in the verification for precipitation (all "o" and "+" grid-points), 
                                   surface temperature (only the "+" grid-points).  
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Figure 3 Saptial average of the 1951-99 temporal correlation for the US precipitation (top) 

and field significance values (bottom). Points above the shade are statistically 
significant at 95% confidence level.    
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Figure 4 Temporal correlation between observed and simulated/hindcast 3-month mean anomalies of 
precipitation. Red numbers are the first digit of of the correlation coefficient value at each grid-point. 
Having higher than 90% local significance. Black numbers shown at bottom right corner in each panel 
indicate field significance level (N/N0) of  the corresponding correlation patterns.  Ratios exceeding  1 
indicates field significant at 95% confidence level. Note: the “lag-0” in figure caption represents 
“simulation”, and “lag-1” is used for “zero-lead hindcast” in text.    
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Figure 4 continued. 
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Figure 5  Same as Fig. 3 except for the US surface temperature.   
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Figure 6 Same as Fig. 4 except for the US surface temperature. 
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Figure 6 continued.  
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Figure 7 Spatial distribution of the correlation coefficient between SST and an index of  regional mean 
surface temperature over the northern U.S. (42N- 52N,120W-70W) based on  AGCM  simulated (top 
panel) and observed (bottom panel) NDJ surface temperatures. Contour interval 0.1.  Green box denotes 
index region for constructing land temeprature time series, and white box index region for constructing 
SST time series.   
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Figure 8 Time series of NDJ anomalies of Northern U.S. surface temperature (black line) based on 
AGCM simulations (top) and observations (bottom).  Red line denotes the time series of NDJ SSTs 
averaged over the Western Pacific region.  Inserted boxes of Fig. 7 show the averaging domains for 
contructing each time series.  
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Figure 9  The 1950-1999 temporal correlation  between the NDJ SST anomalies and the NDJ index of 
subtropical west Pacific SSTs.  Contour interval 0.1. See Fig. 7 for the averaging domain for 
constructing the index. The irregular white contour encloses a region of SST variations coherent with 
the index region, and is used as the forcing region for idealized AGCM simulations.  
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Figure 10 Spatial distribution of the correlation between the NDJ SST anomalies in the western Pacific 
Ocean and the multi-AGCM ensemble mean (top panel) and observed (middle panel) surface 
temperature anomalies. Contour interval is 0.1. The CCM3 response to the idealized SST anomalies in 
the Western Pacific Ocean is shown in the bottom panel. Contour interval is 1. C.     
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Figure 11 Same as Fig.6 but for the NDJ simulation skill  based on a univariate regression 
model using only an index of subtropical west Pacific (WP) SSTs as predictor, a bivariate 
regression model using the WP and Nino 3.4 indicies as predictors (middle panel); and the 
hindcast skill based on a lagged bivariate model relating ASO Nino3.4 and WP SST 
anomalies to NDJ surface temperature (bottom panel),  
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Figure 12.   The U.S. spatially averaged multivariate model hindcast skill for 1951-99 for observed U.S. 
precipitation, and surface temperature using identical empirical models except that the predicand data are derived 
from the AGCMs (MR(G)) in one case and from the observations in the other case (MR(O)).  
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Figure 13 Probability distribution of the 50-year U.S. surface temperature skill obtained from the 500-year 
simulation of the NCAR coupled climate system model.   
 
 


